Management Guide¶
Lifecycle Management for MCP Servers¶
Effective management ensures MCP servers remain reliable, secure, and performant throughout their lifecycle.
Management Phases¶
1. Planning¶
- Requirements gathering
- Architecture design
- Resource allocation
- Risk assessment
2. Development¶
- Implementation
- Testing
- Documentation
- Code review
3. Deployment¶
- Environment setup
- Configuration management
- Release process
- Rollout strategy
4. Operation¶
- Monitoring
- Maintenance
- Support
- Optimization
5. Evolution¶
- Updates and patches
- Feature additions
- Performance tuning
- Security hardening
Configuration Management¶
Environment-Based Configuration¶
# config/production.yaml
server:
port: 8000
host: 0.0.0.0
workers: 4
database:
host: prod-db.example.com
pool_size: 20
monitoring:
enabled: true
level: info
rate_limiting:
enabled: true
max_requests: 100
window: 60
Dynamic Configuration¶
class ConfigManager:
def __init__(self):
self.config = self.load_config()
self.watch_changes()
def load_config(self):
env = os.getenv('MCP_ENV', 'development')
return load_yaml(f'config/{env}.yaml')
def watch_changes(self):
# Watch for config file changes
observer = Observer()
observer.schedule(ConfigHandler(self), 'config/')
observer.start()
Version Management¶
Semantic Versioning¶
MAJOR.MINOR.PATCH
1.0.0 - Initial release
1.0.1 - Bug fix
1.1.0 - New feature (backward compatible)
2.0.0 - Breaking change
API Versioning¶
@mcp.tool(version="1.0")
def old_tool(param: str) -> str:
"""Deprecated version"""
return process_v1(param)
@mcp.tool(version="2.0")
def new_tool(param: str, options: dict = None) -> dict:
"""Current version with enhanced features"""
return process_v2(param, options)
Dependency Management¶
Python Dependencies¶
# pyproject.toml
[project]
dependencies = [
"mcp>=1.0,<2.0", # Pin major version
"pydantic~=2.5", # Compatible releases
"requests==2.31.0", # Exact version
]
[tool.pip-tools]
generate-hashes = true
resolver = "backtracking"
Dependency Updates¶
# Check for updates
pip list --outdated
# Update dependencies
pip-compile --upgrade pyproject.toml
# Security audit
pip-audit
Health Monitoring¶
Health Check Endpoint¶
@app.route('/health')
def health_check():
checks = {
'server': 'healthy',
'database': check_database(),
'dependencies': check_dependencies(),
'disk_space': check_disk_space(),
'memory': check_memory()
}
status = 'healthy' if all(
v == 'healthy' for v in checks.values()
) else 'unhealthy'
return {
'status': status,
'timestamp': datetime.utcnow().isoformat(),
'checks': checks
}
Metrics Collection¶
from prometheus_client import Counter, Histogram, Gauge
# Define metrics
request_count = Counter('mcp_requests_total', 'Total requests')
request_duration = Histogram('mcp_request_duration_seconds', 'Request duration')
active_connections = Gauge('mcp_active_connections', 'Active connections')
# Collect metrics
@measure_time(request_duration)
def handle_request(request):
request_count.inc()
with active_connections.track_inprogress():
return process_request(request)
Logging Strategy¶
Structured Logging¶
import structlog
logger = structlog.get_logger()
def process_tool(tool_name: str, params: dict):
logger.info(
"tool_execution_started",
tool=tool_name,
params=params,
timestamp=datetime.utcnow().isoformat()
)
try:
result = execute_tool(tool_name, params)
logger.info(
"tool_execution_completed",
tool=tool_name,
duration_ms=elapsed_time
)
return result
except Exception as e:
logger.error(
"tool_execution_failed",
tool=tool_name,
error=str(e),
traceback=traceback.format_exc()
)
raise
Log Aggregation¶
# filebeat.yml
filebeat.inputs:
- type: log
enabled: true
paths:
- /var/log/mcp-server/*.log
json.keys_under_root: true
json.add_error_key: true
output.elasticsearch:
hosts: ["elasticsearch:9200"]
index: "mcp-logs-%{+yyyy.MM.dd}"
Backup and Recovery¶
Backup Strategy¶
class BackupManager:
def __init__(self):
self.backup_dir = '/backups'
self.retention_days = 30
def backup_state(self):
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
backup_path = f"{self.backup_dir}/backup_{timestamp}.tar.gz"
# Backup configuration
self.backup_config(backup_path)
# Backup data
self.backup_data(backup_path)
# Clean old backups
self.clean_old_backups()
return backup_path
Disaster Recovery¶
#!/bin/bash
# disaster_recovery.sh
# Stop current server
systemctl stop mcp-server
# Restore from backup
tar -xzf /backups/latest.tar.gz -C /
# Restore database
psql < /backups/database.sql
# Start server
systemctl start mcp-server
# Verify health
curl http://localhost:8000/health
Change Management¶
Change Process¶
- Request - Document change request
- Review - Technical and business review
- Approval - Get necessary approvals
- Testing - Test in staging environment
- Implementation - Deploy to production
- Verification - Verify successful deployment
- Documentation - Update documentation
Rollback Plan¶
class DeploymentManager:
def deploy(self, version: str):
# Save current version
self.save_rollback_point()
try:
# Deploy new version
self.update_code(version)
self.run_migrations()
self.restart_services()
# Verify deployment
if not self.verify_health():
raise DeploymentError("Health check failed")
except Exception as e:
logger.error(f"Deployment failed: {e}")
self.rollback()
raise
def rollback(self):
logger.info("Starting rollback")
self.restore_previous_version()
self.restart_services()
self.verify_health()
Capacity Planning¶
Resource Monitoring¶
def monitor_resources():
return {
'cpu_percent': psutil.cpu_percent(interval=1),
'memory_percent': psutil.virtual_memory().percent,
'disk_usage': psutil.disk_usage('/').percent,
'network_connections': len(psutil.net_connections()),
'thread_count': threading.active_count()
}
Scaling Strategy¶
# kubernetes/hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: mcp-server-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: mcp-server
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
Documentation Management¶
Documentation Standards¶
- README.md - Quick start and overview
- API.md - Tool and resource documentation
- CONFIGURATION.md - Configuration options
- TROUBLESHOOTING.md - Common issues and solutions
- CHANGELOG.md - Version history
Documentation Generation¶
def generate_docs():
"""Generate documentation from code"""
docs = {
'tools': extract_tool_docs(),
'resources': extract_resource_docs(),
'configuration': extract_config_schema(),
'api_version': MCP_VERSION
}
render_markdown(docs, 'docs/API.md')
Next Steps¶
- ๐ Lifecycle Management
- ๐ Versioning Strategy
- ๐ Monitoring
- ๐ฆ Updates and Patches
- ๐ Rollback Procedures